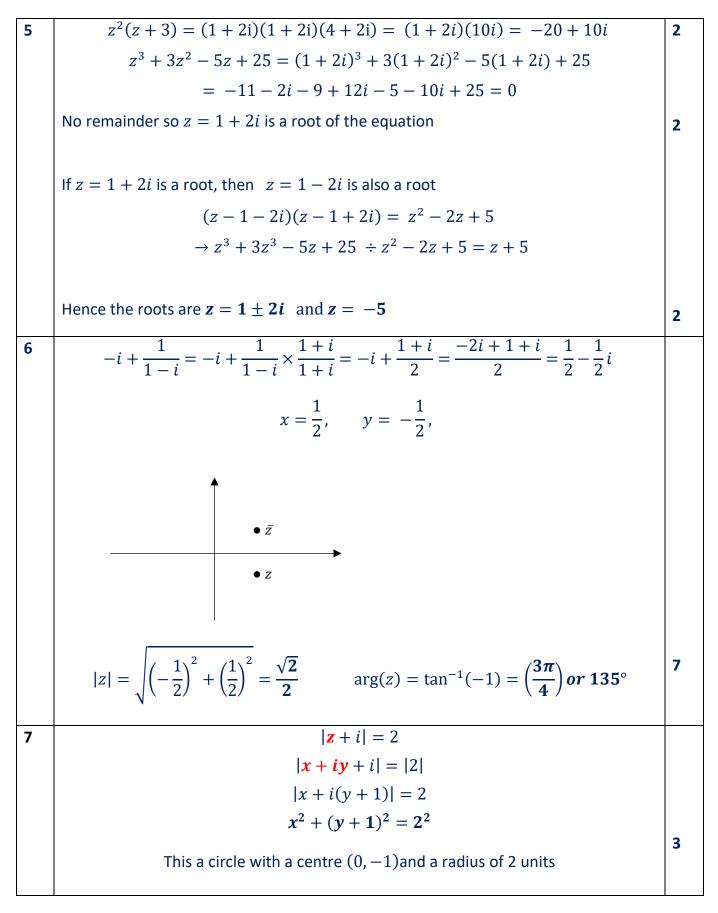
	Algebra and Proof - Questions by Topic	
	Binomial Theorem	
1	Express the binomial expansion of $(a^2 - 3)^4$	4
2	Write down and simplify the general term in the expansion of $\left(x^2 + \frac{1}{x}\right)^{10}$ Hence or otherwise obtain the term in x^{14}	3 2
3	Show that $\binom{n+1}{3} - \binom{n}{3} = \frac{1}{2}n(n-1)$	4
	Complex Numbers	
4	Given the equation $z + 2i\overline{z} = 8 + 7i$ express z in the form $a + ib$	4
5	Given $z = 1 + 2i$ express $z^2(z + 3)$ in the form $a + ib$	2
	Hence or otherwise verify that $1 + 2i$ is a root of the equation $z^3 + 3z^2 - 5z + 25 = 0$	2
	Obtain the other roots of this equation	2
6	Express $z = -i + \frac{1}{1-i}$ in the form $x + iy$ stating the values for x and y.	
	Find the modulus and the argument of z and plot these on an Argand diagram.	7
7	Identify the locus in the complex plane given by $ z + i = 2$	3

	Mathematical Proof	
8	Let n be a natural number.	
	For each of the following statements, decide whether it is true or false.	
	If true, give a proof, if false give a counterexample	
	A If <i>n</i> is a multiple of 9 then so is n^2	
	B If n^2 is a multiple of 9 then so is n	4
9	Let <i>n</i> be an integer.	
	Using proof by contrapositive, show that if n^2 is even, then n is even	4
10	Prove by induction that $\frac{d^n}{dx^n}(xe^x) = (x+n)e^x$ for all integers $n \ge 1$	5
11	Prove by induction that, for all positive integers n ,	
	$\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)} = \frac{1}{4} - \frac{1}{2(n+1)(n+2)}$	
	Hence state the limit of	
	$\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)}$	5

	Matrices	
12	Calculate the inverse of the matrix $\begin{pmatrix} 2 & x \\ -1 & 3 \end{pmatrix}$.	
	For what value of x is this matrix singular	4
13	Find the values(s) of p for which the matrix $A = \begin{pmatrix} p & 2 & 0 \\ 3 & p & 1 \\ 0 & -1 & -1 \end{pmatrix}$ is singular.	4
14	Given the matrix $A = \begin{pmatrix} 0 & 4 & 2 \\ 1 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix}$	
	Show that $A^2 + A = kI$ for some constant k	4
	Obtain the values of p and q for which $A^{-1} = pA + qI$	2
15	Use Gaussian elimination to solve the system of equations	
	x + y + 3z = 2 2x + y + z = 2 3x + 2y + 5z = 5	5
16	Use Gaussian elimination to solve the system of equations below when $\lambda \neq 2$	
	x + y + 2z = 1 $2x + \lambda y + z = 0$ 3x + 3y + 9z = 5	
		6
	Number Theory	
17	Use the Euclidean Algorithm to show that $(231,17) = 1$ where (a, b) denotes the highest common factors of a and b .	
	Hence find integers x and y such that $231x + 17y = 1$	4
18	Use the division algorithm to express 1323_{10} in base 7	3

	Sequences and Series	
19	The first term of an arithmetic sequence is 2 and the twentieth term is 97	
	Obtain the sum of the first 50 terms.	4
20	The sum $S(n)$, of the first n terms of a sequence u_1, u_2, u_3, \ldots is given by $S(n) = 8n - n^2, n \ge 1$	
	(a) Calculate the values of u_1, u_2, u_3 and state what type of sequence it is.	3
	(b) Obtain a formula for u_n in terms of n , simplifying your answer	2
21	The first and fourth terms of a geometric series are 2048 and 256 respectively	
	Calculate the value of the common ratio.	
	Given that the sum of the first n terms is 4088 find the value of n	5
22	The second and third terms of a geometric series are -6 and 3 respectively.	
	State why the associated geometric series has a sum to infinity and obtain this sum.	5
23	Given that $u_k = 11 - 2k$, $(k \ge 1)$. Obtain a formula for	
	$S_n = \sum_{r=1}^n u_k$	3
	Find the values of n for which $S_n = 21$	2

	Algebra and Proof - Answers	
	Binomial Theorem	
1	$(a^{2})^{4} + 4(a^{2})^{3}(-3) + 6(a^{2})^{2}(-3)^{2} + 4(a^{2})(-3)^{3} + (-3)^{4}$ = $a^{8} - 12a^{6} + 54a^{4} - 108a^{2} + 81$	4
2	The general term is	
	$\binom{10}{r} (x^2)^{10-r} \left(\frac{1}{x}\right)^r = \binom{10}{r} x^{20-2r} x^{-r} = \binom{10}{r} x^{20-3r}$	3
	For x^{14} 20 - 3 r = 14 so r = 2	
	$\binom{10}{2}x^{14} = \frac{10!}{2!8!}x^{14} = \frac{10\cdot9}{2!}x^{14} = 45x^{14}$	2
3	$\binom{n+1}{3} - \binom{n}{3} = \frac{(n+1)!}{3!(n+1-3)!} - \frac{n!}{3!(n-3)!} = \frac{(n+1)!}{3!(n-2)!} - \frac{n!}{3!(n-3)!}$	
	$=\frac{(n+1)n(n-1)(n-2)!}{3!(n-2)!}-\frac{n(n-1)(n-2)(n-3)!}{3!(n-3)!}$	
	$=\frac{(n+1)n(n-1)}{3!} - \frac{(n)(n-1)(n-2)}{3!}$	
	$=\frac{n}{3!}[(n+1)(n-1) - (n-1)(n-2)]$	
	$=\frac{n}{6}[n^2 - 1 - (n^2 - 3n + 2)]$	
	$=\frac{n}{6}(3n-3)=\frac{1}{2}n(n-1)$ as required	4
	Complex Numbers	
4	$z = a + ib, \overline{z} = a - ib$	
	LHS $z + 2i\overline{z} = a + ib + 2i(a - ib)$	
	$= a + ib + 2ai - 2bi^2$	
	= (a+2b) + (2a+b)i	
	(a+2b) + (2a+b)i = 8 + 7i	
	a + 2b = 8, $2a + b = 7$, $a = 2$ and $b = 3$, $z = 2 + 3i$	4



	Mathematical Proof	
8	suppose $m = 9n$ then $m^2 = (9n)^2 = 81n^2 = 9(9n^2)$	_
	This m^2 is a multiple of 9 and so A is true	
	$6^2 = 36 = 9(4)$, but 6 is not divisible by 9 so B is not true	4
9	Contrapositive statement If n is odd, then n^2 is odd	
	An odd number takes the form $n = 2k + 1$	
	$n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$	
	Since $2(2k^2 + 2k) + 1$ is odd, then the contrapositive statement is true and therefore the original statement is true	4
10	For $n = 1$, LHS $\frac{d}{dx}(xe^x) = e^x + xe^x = (1 + x)e^x = (x + 1)e^x$ RHS $(x + 1)e^x$ so true for $n = 1$	
	Assume that the statement is true for $n = k$	
	$\frac{d^k}{dx^k}(xe^x) = (x+k)e^x$	
	Now consider $n = k + 1$	
	$\frac{d^{k-1}}{dx^{k+1}}(xe^x) = \frac{d}{dx}\left(\frac{d^k}{dx^k}(xe^x)\right)$	
	$=\frac{d}{dx}(x+k)e^x$	
	$= 1(e^x) + e^x(x+k)$	
	$= e^{x}(1 + x + k) = e^{x}(x + (k + 1))$	
	So statement is true for $n = k + 1$.	
	Since true for $n = 1$, $n = k$ and $n = k + 1$, then by induction this is true for all positive integers n	5

11	For $n = 1$, LHS $\frac{1}{1 \times 2 \times 3} = \frac{1}{6}$ RHS $\frac{1}{4} - \frac{1}{2 \times 2 \times 3} = \frac{1}{4} - \frac{1}{12} = \frac{1}{6}$ so true for $n = 1$	
	Assume that the statement is true for $n = k$	
	$\sum_{r=1}^{k} \frac{1}{r(r+1)(r+2)} = \frac{1}{4} - \frac{1}{2(k+1)(k+2)}$	
	Now consider $n = k + 1$	
	$\sum_{r=1}^{k+1} \frac{1}{r(r+1)(r+2)} = \sum_{r=1}^{k} \frac{1}{r(r+1)(r+2)} + f(k+1)$	
	$=\frac{1}{4} - \frac{1}{2(k+1)(k+2)} + \frac{1}{(k+1)(k+2)(k+3)}$	
	$=\frac{1}{4} + \frac{2 - (k+3)}{2(k+1)(k+2)(k+3)}$	
	$=\frac{1}{4} - \frac{k+1}{2(k+1)(k+2)(k+3)}$	
	$=\frac{1}{4} - \frac{1}{2(k+2)(k+3)}$	
	$=\frac{1}{4} - \frac{1}{2((k+1)+1)((k+2)+1)}$	
	4 $2((k+1)+1)((k+2)+1)$	
	So statement is true for $n = k + 1$. Since true for $n = 1$, $n = k$ and $n = k + 1$, then by induction this is true for all positive integers n	5
	Matrices	
12	Inverse $= \frac{1}{6+x} \begin{pmatrix} 3 & -x \\ 1 & 2 \end{pmatrix}, 6+x=0, \ x=-6$	4
13	For a singular matrix $det A = 0$	
	$\det A = p \times \det \begin{pmatrix} p & 1 \\ -1 & -1 \end{pmatrix} - 2 \times \det \begin{pmatrix} 3 & 1 \\ 0 & -1 \end{pmatrix} + 0 \times \det \begin{pmatrix} 3 & p \\ 0 & -1 \end{pmatrix}$	
	$\det A = p(-p - (-1)) - 2(-3 - 0) + 0(-3 - 0) = 0$	
	$0 = -p^2 + p + 6$, $(3 - p)(p + 2) = 0$, $p = 3$, $p = -2$	4

14	$A^{2} + A = \begin{pmatrix} 0 & 4 & 2 \\ 1 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix} \begin{pmatrix} 0 & 4 & 2 \\ 1 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix} + \begin{pmatrix} 0 & 4 & 2 \\ 1 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix}$	
	$= \begin{pmatrix} 2 & -4 & -2 \\ -1 & 2 & -1 \\ 1 & 2 & 5 \end{pmatrix} + \begin{pmatrix} 0 & 4 & 2 \\ 1 & 0 & 1 \\ -1 & -2 & -3 \end{pmatrix}$	
	$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = 2I$	4
	$A^{2} + A = 2I$, therefore $A^{-1}(A^{2} + A) = A^{-1}2I$	
	$A + I = 2A^{-1}$	
	$A^{-1} = \frac{1}{2}A + \frac{1}{2}I$	2
15	$\begin{pmatrix} 1 & 1 & 3: & 2 \\ 2 & 1 & 1: & 2 \\ 3 & 2 & 5: & 5 \end{pmatrix}$	
	$ \begin{pmatrix} 1 & 1 & 3: & 2 \\ 0 & 1 & 5: & 2 \\ 0 & 1 & 4: & 1 \end{pmatrix} 2R_1 - R_2, 3R_1 - R_3, $	
	$\begin{pmatrix} 1 & 1 & 3: & 2 \\ 0 & 1 & 5: & 2 \\ 0 & 0 & 1: & 1 \end{pmatrix} R_2 - R_3,$	
	$z=1, \qquad y=-3, x=2$	5
16	$\begin{pmatrix} 1 & 1 & 2: & 1 \\ 2 & \lambda & 1: & 0 \\ 3 & 3 & 9: & 5 \end{pmatrix} \begin{pmatrix} 1 & 1 & 2: & 1 \\ 0 & \lambda - 2 & -3: & -2 \\ 0 & 0 & 3: & 2 \end{pmatrix} R_2 - 2R_1, R_3 - 3R_1,$	
	$z = \frac{2}{3}$, $(\lambda - 2)y - 2 = -2$, $y = 0$, $x = 1 - \frac{4}{3} = -\frac{1}{3}$	
	When $\lambda = 2$ the second and third rows of the last matrix are the same which would give an infinite number of solutions.	6

	Number Theory	
17		
	$231 = 17 \times 13 + 10$	
	$17 = 10 \times 1 + 7$	
	$10 = 7 \times 1 + 3$	
	$7 = 3 \times 2 + 1$	
	$3 = 1 \times 3 + 0$	
	Hence $(231,17) = 1$	
	$1 = 7 - 3 \times 2$	
	$1 = 7 - 2 \times (10 - 7 \times 1) = -2 \times 10 + 3 \times 7$	
	$1 = -2 \times 10 + 3 \times (17 - 10 \times 1) = 3 \times 17 - 5 \times 10$	
	$1 = 3 \times 17 - 5 \times (231 - 13 \times 17) = 68 \times 17 - 5 \times 231$	
	$x=-5, \qquad y=68$	
		4
18		
	$1323 = 189 \times 7 + 0$	
	$189 = 27 \times 7 + 0$	
	$27 = 3 \times 7 + 6$	
	$3 = 0 \times 7 + 3$	
	$1323_{10} = 3600_7$	2
		3
	Sequences and Series	
19	$U_{20} = 2 + d(19) \rightarrow 97 = 2 + 19d, d = 5$	
	$S_{50} = \frac{1}{2}50(4 + 49 \times 5) = 6225$	
	۷	4
20	$s(1) = 7, \ s(2) = 12, \ S(3) = 15$	
	$u_3 = 3, \ u_2 = 5, u_1 = 7$	
	This is an arithmetic sequence where $a = 7$ and the common difference is -2	3
	$u_n = a + d(n-1) = 7 - 2(n-1) = 9 - 2n$	2

21

$$U_{1} = ar^{0} \rightarrow a = 2048, \quad U_{4} = ar^{3} \rightarrow 256 = 2048r^{3}$$

$$r^{3} = \sqrt[3]{\frac{256}{2048}} = \sqrt[3]{\frac{1}{8}} = \frac{1}{2}$$

$$4088 = \frac{2048\left(1 - \left(\frac{1}{2}\right)^{n}\right)}{1 - \frac{1}{2}}$$

$$\frac{4088}{2 \times 2048} = 1 - \left(\frac{1}{2}\right)^{n}$$

$$\left(\frac{1}{2}\right)^{n} = \frac{1}{512}, \quad 2^{n} = 512, \quad n = \log_{2} 512, n = 9$$
4
22

$$U_{2} = ar^{1} \rightarrow -6 = ar^{1}, \quad U_{3} = ar^{2} \rightarrow 3 = ar^{2}$$

$$\frac{-6}{r} = \frac{3}{r^{2}}, \quad r = -\frac{1}{2}, \ a = 12$$
Sum to infinity exists when $|r| < 1, \ -1 < -\frac{1}{2} < 1$ meets this condition

$$S_{cc} = \frac{12}{1 + \frac{1}{2}} = 8$$
5
23

$$S_{n} = \sum_{r=1}^{n} 11 - 2k = \sum_{r=1}^{n} 11 + 2\sum_{r=1}^{k} k$$

$$= 11n - 2\left(\frac{n}{2}(n+1)\right)$$

$$= 11n - n^{2} - n = 10n - n^{2}$$

$$10n - n^{2} = 21, \ n^{2} - 10n + 21 = 0, \quad (n-3)(n-7) = 0$$
For $S_{n} = 21$ $n = 3$ and 7
24